
2 
 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE  01-31-2012 
 

2. REPORT TYPE   Final Report  
 
 

3. DATES COVERED (2/1/2009 - 12/31/2011) 
  

4. TITLE AND SUBTITLE 
Noise Enhanced Sensory Signal Processing 
 
 
 
 
 

5a. CONTRACT NUMBER 
 

 5b. GRANT NUMBER 
FA9550-09-1-0064 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Pramod K. Varshney 
 
 
 

5d. PROJECT NUMBER 
 

 5e. TASK NUMBER 
 

 5f. WORK UNIT NUMBER 
 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

  
8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

Syracuse University 
113 Bowne Hall 
Syracuse, NY 13244 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
Air Force Office of  AFOSR 
Scientific Research   
  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
 

 
13. SUPPLEMENTARY NOTES 
 
14. ABSTRACT  
Understanding and emulating sensory information systems is a challenging task. The goal of this project was to develop the 
theory of noise enhanced signal processing (NESP) where the performance of some nonlinear systems may be enhanced by 
adding a suitable amount of noise to the input signal. The main objective of this project was to explore the applicability of 
NESP based approaches to enhance the performance of ``source blind'' signal processing algorithms. During this effort, we 
have explored the NESP mechanism for signal detection and estimation problems in a non-stationary and dynamic 
environment and developed some iterative learning algorithms to apply NESP based procedure with incomplete knowledge.  
We investigated image enhancement algorithms based on stochastic resonance (SR) noise which improve the performance of 
suboptimal image enhancers. We further explored the recently developed Compressive Sensing based measurement scheme in 
performing detection, classification and estimation with sparse signals and derived achievable performance limits. Results 
obtained have been documented in a number of technical publications.  
15. SUBJECT TERMS 
Noise Enhanced Signal Processing, Image Processing, Stochastic Resonance,  Compressive Sensing, Dithering 
16. SECURITY CLASSIFICATION OF:  
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Pramod K. Varshney 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

 
None 

 
 

19b. TELEPHONE NUMBER (include area 
code) 
1-315-443-4013 
  Standard Form 298 (Rev. 8-98) 

Prescribed by ANSI Std. Z39.18 

mason
Typewritten Text
AFRL-OSR-VA-TR-2012-0949

mason
Typewritten Text

mason
Typewritten Text

mason
Typewritten Text
DISTRIBUTION A:  APPROVED FOR PUBLIC RELEASE

mason
Typewritten Text

mason
Typewritten Text
875 N Randolph St, Arlington, VA  22203

mason
Typewritten Text

mason
Typewritten Text
18



1 
 

 

 

Final Report 
 
 

AFOSR Project: 
 

Noise Enhanced Sensory Signal Processing 

 

Syracuse University 
Syracuse, NY 13244 

 
Reporting Date: 02/01/2009-12/31/2011 

    Project #: FA9550-09-1-0064 

 
Principal Investigator:  Prof. Pramod K. Varshney 

Department of EECS, Syracuse University 
 

 

 

 

 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 



3 
 

2. Objectives 
The overall objective for this project was to design, implement and test efficient NESP 
based theories and algorithms to enhance the performance of sensory signal and image 
processing systems in various environments. This also included the investigation of the 
use of random projections on measurements in sparse signal processing, which is termed 
as Compressive Sensing (CS). These required progress towards the following objectives:  

• Address fundamental issues such as improvability conditions for signal 
processing systems and bounds on achievable performance;  

• Explore the NESP mechanism for signal detection and estimation problems in a 
non-stationary and dynamic environment; 

• Algorithms for learning the changing nature of data sources;  
• Application of NESP for sensory signal processing tasks such as voice activity 

detection, blind source separation, and image enhancement; 
• Understand the neural processing of the ear in an attempt to determine how noise 

enhancement might improve hearing.  A further goal was to apply what has been 
learned to improve current techniques of signal processing by leveraging the ear’s 
ability to process signals; 

• Explore the use of CS mechanism and develop efficient algorithms for sparse 
signal detection and classification with different signal and sparsity models;  and  

• Explore the effect of quantization and channel impairments in communication on 
sparse signal processing based on CS-based measurements.  

3. Research Efforts (200 word summary) 
We developed NESP theory for noise enhanced nonparametric detection where we 
investigated the detection performance of additive noise modified nonparametric 
detectors and the optimal noise was determined for both Sign and Dead-Zone limited 
detectors. We also considered the nonparametric distributed estimation problem for a 
parallel distributed estimation system and a set of nonparametric one-bit quantizers were 
proposed. Noise-Refined Image Enhancement Using Multi-Objective Optimization 
(MOO) was investigated where we developed an image enhancement system based on 
stochastic resonance (SR) noise, for improving the suboptimal image enhancers. We 
investigated the image segmentation problem by incorporating the human visual system 
(HVS) properties, to achieve the segmentation results which are preferred by the humans. 
Further, we investigated the effect of stochastic resonance in speech signal processing. A 
new Approach to Fourier Synthesis with Application to Neural Encoding and Speech 
Classification was proposed.  With the Poisson Spectral Representation for Random 
Process Modeling, we have been able to show that noise can enhance the neural firings. 
In the context of CS, we investigated the performance limits of detection and 
classification of sparse signals with compressive measurements. We found sufficient 
conditions which ensure the reliable recovery of support of sparse signals from quantized 
compressive measurements in the presence of noise.  
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4. Summary of Accomplishments/New Findings 
Noise Enhanced Nonparametric Detectors 
Nonparametric detectors are widely used in signal detection problems and provide a 
guaranteed level and reasonable power for large classes of input distributions. When 
nonparametric detectors are designed, the underlying distributions are assumed unknown 
except that certain properties such as symmetry are assumed. In most cases, a 
nonparametric detector is less efficient than the optimal detector. Therefore, it is a very 
interesting and important problem to try to improve the detection performance of a 
nonparametric detection scheme while maintaining its constant false alarm rate (CFAR) 
property. 
In this work, we investigated the effect of adding noise to nonparametric detectors. The 
detectors are assumed fixed nonparametric detectors such that we cannot adjust their 
parameters or the thresholds, and the underlying distributions for both hypotheses are 
assumed to be known when we design our noise modified nonparametric detectors. Three 
typical nonparametric detectors were examined, namely, the sign detector, the Wilcoxon 
detector and the dead-zone limiter detector (DZLD) as they are the well-known sign, rank 
and conditional tests, respectively. The optimal noise distribution is determined. For the 
case where only unlabeled data are available, a simple and robust adaptive learning 
algorithm is proposed to estimate the optimal additive noise distribution. A near optimal 
performance is reached very quickly and accurately. 
 

 
Fig.1. Performance of the adaptive noise enhanced nonparametric detectors based on the 
proposed learning algorithm. The algorithm converges to the global optimal rapidly as 

the number of samples increases. 
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. 
Achieving Distributed Estimation Performance via a Dithering Noise 
Parameter estimation from quantized data, especially from one-bit quantized samples has 
long been an important active research area. Among a number of distributed estimation 
system models, the parallel model consisting of a fusion center and local sensors 
communicating with the fusion center directly is the most widely used and studied one. 
Full precision Cramér-Rao lower bound (CRLB) where no quantization is assumed is 
often employed to evaluate and compare distributed estimation performance where the 
sensor observations have to be quantized before any further processing. However, as it 
completely disregards quantization and often does not exist when the sensor observation 
noise is bounded, as an evaluation metric, full precision CRLB is often too optimistic or 
not applicable.  
In this work, we considered the performance evaluation problem for distributed 
estimation systems with identical one-bit quantizers under the minimax CRLB criterion. 
We first established the sufficient conditions for the optimal pair of noise distribution and 
the quantization rule. The performance limit is determined by finding the optimized 
quantizer under the perfect observation model where the sensor observations are 
noiseless. When the sensor noise does exist, the set of optimal noise distribution function 
and quantizer are also determined. Compared to the full precision CRLB, the 
performance limit is shown to be a much tighter bound when the parameter range is 
relatively large. Effectiveness of the optimal Gaussian noise, Uniform and the sinusoid 
noise are evaluated and the optimality of the proposed quantization scheme was 
demonstrated. 

 
Fig.2 Performance comparison of distributed estimation systems in terms of CRLB for 

the optimal Gaussian, uniform and Sinusoid dithering noises; minimax criterion is 
adopted for the system design:  lower maximum CRLB means better estimation 

performance.  
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Optimal Noise Enhanced Distributed Estimation with Incomplete Information 
In practical applications, the exact information about the observation model is often 
unknown. In this work, we considered the nonparametric distributed estimation problem 
where the local sensor observation noises are assumed to be bounded with known first 𝑁 
moments but with unknown probability density functions (pdf). For the ease of 
discussion, in this work, we mainly considered the special case when all the first 𝑁 noise 
moments as well as the sensor quantization rules are assumed to be the same for all 
sensors. The actual sensor observation noise distributions, however, do not have to be 
identical or independent. Moreover, the distributed estimators we develop can be 
generalized straightforwardly for the more general non-identical case. Once again, the 
nonparametric sensor quantization rules developed in this paper are assumed identical 
across the sensors even though the sensor noises may not be i.i.d. We first developed a 
set of nonparametric distributed estimators for the general case where 𝑁 can be any 
positive integer. The proposed nonparametric estimators were shown to be either 
unbiased or at least asymptotically unbiased with a known estimation variance. The 
design problem where the sensor noises are independently distributed with known first 
moment or the first two moments, i.e., 𝑁 = 1 or 𝑁 = 2, was examined in detail. 
Moreover, we also evaluated the performance of the proposed estimation schemes when 
the sensor noises are not independent but 𝑚-dependent. The proposed nonparametric 
distributed quantization and estimation schemes are still consistent and the effect of the 
dependence was quantified. Performance of the distributed estimation schemes was also 
investigated for the case where the channels between sensors and the fusion center are 
noisy. The relationship between the proposed local quantizers and nonsubtractive 
dithering was explored. It was shown that optimal quantization can be achieved by a 
deterministic quantizer with a dithering noise added to the observed signal.  
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Fig3. Performance comparison of distributed estimation systems in terms of Fisher 
Information for the optimal nonparametric quantizers based on 1st and 2nd moment 

information; minimax criterion is adopted for the system design:  higher minimum Fisher 
Information means better estimation performance. 

 
Noise Enhanced Image Enhancement based on Multi-objective Optimization 
Image enhancement plays a fundamentally important role in nearly all of the vision and 
image processing systems. In this work, we presented a novel scheme for the 
enhancement of images using stochastic resonance (SR) noise. In this scheme, a suitable 
dose of noise is added to the lower quality images such that the performance of 
suboptimal image enhancer is improved without altering its parameters. Image 
enhancement is modeled as a constrained multi-objective optimization (MOO) problem, 
with similarity and some desired image enhancement characteristic being the two 
objective functions. The principle of SR noise-refined image enhancement was analyzed, 
and an image enhancement system was developed. A genetic algorithm-based MOO 
technique was employed to find the optimum parameters of the SR noise distribution. In 
addition, a novel image quality evaluation metric based on human visual system (HVS) 
was developed as one of the objective functions to guide the MOO search procedure. For 
illustration, four types of SR noises were employed in this work to improve different 
enhancers. Encouraging results were obtained when applied to a number of image 
distortion situations. 
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Fig.4. MSE of the de-noising results using median and Wiener filters. (a) Median filter-

based de-noising; (b) Wiener filter-based de-noising. OrMe and OrWi mean the de-
noising using original median and Wiener filter, respectively, without SR noise. Adding a 

suitable SR noise to the image prior to processing can significantly improve the 
performance. 

 
Human Visual System-Driven Image Segmentation Algorithm 
In most circumstances, humans are the ultimate judge of the quality of a segmentation 
result. Thus a segmentation algorithm is likely to yield satisfactory results if the objective 
function is designed by including human visual system (HVS) preferences within the 
context of segmentation. In this work, the maximum a posteriori probability-Markov 
random fields (MAP-MRF) framework was employed for the segmentation problem. 
More specifically, several HVS-based segmentation quality evaluation metrics were 
incorporated into the objective function as prior information, which were encoded in the 
MRF model to obtain the a posteriori probability distribution of the segmentation result 
given the observed image data, and the just-noticeable difference (JND) model was 
employed when calculating the difference of the image contents. Segmentation was 
carried out in an iterative manner, which aims at finding the MAP solution to the 
optimization problem. In the segmentation procedure, the “better” intermediate 
segmentation result, as evaluated by HVS based metrics for region and boundary, was 
assigned a higher survival probability. Experiments were carried out to compare the 
performances of the presented algorithm and several representative segmentation 
algorithms available in the literature, and very encouraging results were obtained. 
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                                              (a)                                  (b)                                 (c) 

   

                                              (d)                                  (e)                                 (f) 

Fig.5. Original MRI brain image and the segmentation results. (a) Original MRI brain 
image; (b) segmentation by conventional MRF [1]; (c) segmentation by Otsu 

thresholding [2]; (d) segmentation by level set evolution-based method without 
reinitialization [3]; (e) segmentation by multi-scale normalized cuts-based segmentation 
[4]; (f) segmentation by the presented HVS-driven image segmentation algorithm. We 
wish to segment the white matter (WM) from the gray matter (GM) and cerebrospinal 

fluid (CSF). The segmented non-WM tissues are shown using purple and black colors in 
(b), (c) and (f). The regions enclosed by the light green curves in (d) correspond to the 

segmented WM. In (e), we expect the segmented WM to have the same color. 
References 

[1] S. Z. Li, Markov Random Field Modeling in Computer Vision. New York: Springer-Verlag, 2001. 

[2] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. on Sys., Man., 
Cyber, vol. 9, pp.62–66, 1979. 

[3] C. Li, C. Xu, C. Gui, and M.D Fox, “Level set evolution without re-initialization: a new variational 
formulation,” in Proc. IEEE Computer Society Conference on Computer Vision and Patter Recognition 
(CVPR), vol. 1, pp. 430- 436, 2005. 

[4] T. Cour, F. Benezit, and J. Shi, “Spectral segmentation with multi-scale graph decomposition,” in Proc. 
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2005. 

 
Performance Limits of Image Segmentation Algorithms 
Image segmentation is a very important step in image analysis. Performance evaluation 
of segmentation algorithms plays a key role in both developing efficient algorithms and 
in selecting suitable methods for the given tasks. Although a number of publications have 
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appeared on segmentation methodology and segmentation performance evaluation, very 
little attention has been given to statistically bounding the performance of image 
segmentation algorithms. Therefore, an investigation of the performance bound, which is 
only associated with the available image data and is independent of the segmentation 
algorithms, is very helpful to evaluate the efficiency of image segmentation techniques. A 
tight performance bound can tell us what the best achievable performance of any image 
segmentation algorithm is for the specific image content. Thus, performance bounds can 
serve as benchmarks for the image dataset and segmentation algorithms. They can also be 
used to study how the image content or image preprocessing operations affect the 
segmentation performance. The distance or gap between the actual segmentation error of 
an approach and a tight bound can provide us with the efficiency of that segmentation 
approach and available room for improvement.  

In this work, we formulated image segmentation as a statistical parameter estimation 
problem and derived Cramér–Rao bound (CRB) on the performance measure, namely on 
the mean square error (MSE) of the resulting pixel labels, based on the biased estimator 
assumption and Affine bias model. In addition, an approximation was made when 
computing the expectation of the inverse Fisher information matrix to reduce the 
computational burden. Bootstrapping technique and empirical approximation to the 
second-order statistics were employed to overcome the difficulty when the probability 
distribution of the images was unknown. Our final goal was to derive a tight performance 
bound for the image segmentation problem and compare the bound with the performance 
of various segmentation algorithms when applied to different image datasets. The effect 
of the factors, such as the intensity contrast in an image on the segmentation result, were 
investigated via the bound, which gave us insights into the achievable accuracy of a 
segmentation algorithm in segmenting a specific image. 

Experimental results were obtained where the performance of several representative 
image segmentation algorithms was compared with the derived bound on both synthetic 
and real-world image data. From Figs. 6~8, it can be seen that the bounds derived from 
the biased estimator assumption bounded the performance of the segmentation algorithms 
from the bottom, but those derived from the unbiased assumption failed. 
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                                             (a)                                                                                           (b) 

Fig. 6 Bounds for hard image segmentation (a synthetic image), RACM: Region-based 
active contour model, MNCut: Multi-scale normalized cuts-based segmentation (a) MSEs 

and bound under the biased estimator assumption; (b) variances and bound under the 
unbiased estimator assumption. 
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         (a)                                                                                               (b) 

Fig. 7 Bounds for hard image segmentation (real-world image, namely a mammogram). 
(a) MSEs and bound for biased estimator assumption (b) variances and bound for 

unbiased estimator assumption. 
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(a)                                                                                   (b) 

Fig. 8 Bounds for hybrid image segmentation (a synthetic image), where both fuzzy 
pixels and hard pixels exist in the image (a) MSEs and bound for biased estimator 

assumption (b) variances and bound for unbiased estimator assumption. 
 
A HVS-Driven Image Segmentation Framework Using Local Segmentation 
Performance Measure 
Markov random field (MRF) models have been used to represent contextual information 
in many pixel-based segmentation problems, because they can be employed to 
characterize the spatial dependency or spatial distribution. A statistical method, namely 
the MAP approach, is often used during MRF-based image segmentation, which has been 
investigated comprehensively. The MAP-MRF method maximizes an objective function 
consisting of the a priori density in terms of the Gibbs distribution and the conditional 
probability density function (PDF for continuous data, and probability mass function, 
PMF, for discrete data) of the observed image data given the distribution of the 
segmented region, in which some image features are often embedded. However, some 
strong assumptions and inaccurate estimates of the conditional PMF corresponding to 
intensity values of single pixels limit its performance and application. 

Moreover, many existing segmentation algorithms have been developed based on the 
information provided by the image data themselves and neglect the fact that a human is 
usually the ultimate evaluator. That is, they do not consider the effect of the HVS on 
object interpretation and extraction. As a result, many algorithms perform unsatisfactorily 
from a human vision point of view.   

In an attempt to address the above two problems, we presented a novel image 
segmentation framework. The framework was based on a “soft” objective function which 
considered the effect of the segmentation result for a single pixel on the segmentation 
performance in local regions. A specific performance measure, the probability of 
successful detection, was used in this work to show the efficiency and utility of this 
framework. Moreover, a contrast sensitivity function (CSF), as an object feature enhancer, 
was employed for further improving the segmentation performance, which made the 
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segmentation procedure HVS-driven. 

    

(a)                                     (b)                                   (c)                                  (d) 

Fig. 9 (a) Original mammogram with micro-calcifications; (b) segmentation result 
with MAP-MRF; (c) segmentation result with the presented algorithm without CSF 

enhancement; (d) segmentation result of the presented algorithms after CSF 
enhancement. The detected positives are marked with dots, the false positives and 

missed lesions are pointed out by dashed circles and solid circles, respectively. 

 
Voice Activity Detection with Stochastic Resonance 
In this work, stochastic resonance was applied to speech signal processing. In particular, 
we presented a method to improve detection performance of a suboptimal voice activity 
detector without changing it. In our experiments, we used Sohn and Sung’s voice activity 
detector as our reference detector. This detector was designed by using the Generalized 
Likelihood Ratio Test (GLRT) method under the assumptions that speech and noise 
signals are Gaussian random processes that are independent of each other and the 
Discrete Fourier Transform (DFT) coefficients of each process are asymptotically 
independent Gaussian random variables. However, recent studies have shown that 
Laplacian and Gamma distributions more accurately represent DFT coefficients of clean 
speech and noise signals. Therefore, Sohn and Sung’s voice activity detector is 
suboptimal because of its underlying design assumptions and can be improved. In this 
study, in order to improve the detection performance, the input signal of the detector was 
preprocessed using the bistable SR system used as a SR filter. Optimum SR filter 
parameters were obtained by using the deflection coefficient. Due to the high complexity 
of the signal of interest, the coefficients were found in an iterative manner. Experiments 
conducted on different input signals and training data sets showed that it is possible to get 
optimum parameters, even when only 20% of the input signal is used as training data, if it 
has enough information about the distribution of input signal. The detector performance 
of the system before and after the SR filter was compared using the Receiver Operating 
Curves (ROC). From the ROCs, we observe that our method improved detection 
performance up to 17.5% for lower false alarm rates and up to 4.5% for higher false 
alarm rates. Based on the simulation results, our method is an efficient method to 
improve detection performance of suboptimal voice activity detector. 
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Performance Analysis of Sparse Signal Detection and Classification with 
Compressive Measurements  
Compressive Sensing (CS) enables the recovery of sparse or compressible signals from a 
relatively small number of randomized projections on original measurements compared 
to that with the original length samples. Although most of the recent CS literature has 
focused on sparse signal recovery, there are signal processing applications where 
complete signal recovery is not necessary. Instead we might be only interested in solving 
inference (detection, classification or estimation of certain parameters) problems. Solving 
inference problems with compressive measurements has been given some attention in the 
recent CS literature in different contexts.  
In this work, we considered the detection and classification of sparse as well as non-
sparse stochastic signals with compressive measurements. We derived the performance 
limits of the optimal detector and bounds on probability of error of the optimal 
classification rule when the signals to be detected/classified are random and  not 
necessarily sparse, and detection/classification is performed with M ( NM < , N is the 
signal dimension) length compressive measurements. Specifically we showed that, 
Kullback-Leibler (KL) and Chernoff distances, which are important distance measures in 
evaluating performance of detection/classification, are distorted by a factor of M/N with 
M-length compressive measurements compared to that with N-length original 
measurements. For sparse signal detection with K non-zero elements with unknown 
supports, we derived approximate performance measures when certain prior information 
on the support sets of sparse signals is available.  
 

 
 

Fig. 10 Probability of detection Vs. M/N in sparse signal detection with a fixed signal-to-
noise-ratio (SNR); probability of false alarm 1.0=α , N=1000 
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Performance Bounds for Sparse Support Recovery with Quantized Compressive 
Measurements 
Sparse support recovery is concerned with finding the locations of the non-zero elements 
of a sparse signal. The problem of sparsity pattern recovery arises in a wide variety of 
areas including source localization, sparse approximation, subset selection in linear 
regression, and signal denoising. This problem has been addressed by many authors in 
the last few decades in different contexts. With the recently introduced sparse signal 
acquisition scheme via random projections, named CS, the sparse support recovery 
problem has received much attention in the context of random dictionaries.  
In this work, the problem of support recovery of sparse signals with quantized 
compressive measurements is considered. Although most of the CS literature has focused 
on sparse signal recovery from real valued compressive measurements, it is important to 
consider quantization of compressive measurements since in practice, measurements are 
quantized before transmission or storage. To that end, we found the sufficient conditions 
which ensure the reliable recovery of the sparsity pattern of a sparse signal from 
quantized compressive measurements in the presence of noise. More specifically, we 
found the relationships among the parameters, the signal dimension, sparsity index, 
number of compressive measurements, number of bits used for quantization, and the 
signal to noise ratio which ensure the asymptotic reliable recovery of the support of 
sparse signals with the Maximum Likelihood (ML) decoder when the entries of the 
measurement matrix are drawn from a Gaussian ensemble. 
 
A New Approach to Fourier Synthesis with Application to Neural Encoding and 
Speech Classification  
It has been shown that a positive signal can be alternatively represented by a Fourier 
expansion using only “on-off” unit amplitudes.  This mimics what the ear does in the 
cochlea, whereby the hair cells either fire or do not fire.  This representation is a new one 
and may explain how the brain accomplishes neural coding, a holy grail in cognitive 
science research.   
 
A Poisson Spectral Representation for Random Process Modeling 
Another result is by modeling the neural firings by a nonhomogenous Poisson process a 
new spectral representation is possible. This spectral representation has already been used 
to synthesis random processes with an arbitrary power spectral density and first-order 
probability density function, which has solved a long standing problem.  Additionally, 
this Poisson representation may lead to a two-dimensional “place-rate” neural encoding 
model to describe how the ear encodes sounds.  Finally, with the new representation we 
have been able to show that noise can enhance the neural firings, which now indicates 
how stochastic resonance accomplishes its enhancement of signal recognition. 
 
Encoding of Sound in the Human Ear 
We have investigated the encoding of sound in the human ear.  Neural encoding, i.e., the 
means by which the ear is able to convey information to the brain by using only a 
sequence of temporal neural spikes, can be explained by a new signal representation.    It 
is shown how a signal may be neurally encoded, and then how to use that model to 
explain the enhancement of a low level signal by the addition of noise.  The latter is 
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generally known as stochastic resonance.  In particular, the results indicate how a positive 
deterministic signal can be perfectly represented using a sequence of nonuniformly 
spaced impulses, all with the same strength. The latter is in contrast to the usual linear 
systems representation of a signal as an integral of varying strength Dirac impulses.  The 
mathematical model, interestingly, is equivalent to the very simple ``integrate and fire'' 
model used to describe the action of a neuron.  Hence, it is conjectured that results may 
help to explain the signal processing operation of the neuron and how it is able to transfer 
signal information to the brain.  Many other models exist for this neural encoding but it is 
important to note that the one proposed is the simplest one that is directly motivated by 
the physics of the ear.   
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 [1] H. Chen, P. K. Varshney, J. H. Michels and S. M. Kay, “Noise enhanced 
nonparametric detection,” IEEE Transactions on Information Theory, vol. 55, no. 2, pp. 
499–506, 2009. 
[2] R. Peng, H. Chen, and P. K. Varshney, “Noise-enhanced detection of micro-
calcifications in digital mammograms,” IEEE Journal of Selected Topic in Signal 
Processing, vol.3, no.1, pages 62-73, Feb. 2009. 
[3] H. Chen and P. K. Varshney, “Performance limit for distributed estimation systems 
with identical one-bit quantizers,” IEEE Transactions on Signal Processing, vol. 58, no. 
1, pp. 466–471, Jan. 2010. 
[4] R. Peng, H. Chen, and P. K. Varshney, “Noise-refined image enhancement using 
multi-objective optimization,” in Proc. of IEEE 44th Annual Conference on Information 
Sciences and Systems (CISS), Princeton, NJ, Mar.17-19, 2010  
[5] H. Chen and P. K. Varshney, "Nonparametric quantizers for distributed estimation," 
IEEE Trans. Signal Processing., vol 58, no 7, pp. 3777-3787, July 2010. 
[6] S. Kay, “A New Approach to Fourier Synthesis with Application to Neural Encoding 
and Speech Classification”, IEEE Signal Processing Letters, Oct. 2010  
[7] R. Peng, and P. K. Varshney, “A human visual system-driven image segmentation 
framework using a local segmentation performance measure,” IEEE Western NY Image 
Processing Workshop, Rochester, NY, Nov. 5, 2010 
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[8] T.Wimalajeewa, H. Chen and P. K. Varshney, “Performance Analysis of Stochastic 
Signal Detection with Compressive Measurements”, 44th Annual Asilomar Conf. on 
Signals, Systems and Computers, Pacific Grove, CA, Nov 2010  
[9] M. Gagrani, P. Sharma, S. Iyengar, V. S. S. Nadendla, A. Vempaty, H. Chen, and P. 
Varshney, “On noise enhanced distributed inference in the presence of byzantines,” in 
Proceedings of Allerton-2011, Urbana, IL, 2011. 
[10] T.  Wimalajeewa and P. K. Varshney, ”Performance Bounds for Sparsity Pattern 
Recovery with Quantized Noisy Random Projections”, IEEE Journal of Selected Topics 
in Signal Processing, Special Issue on Robust Measures and Tests Using Sparse Data for 
Detection and Estimation, pp. 43-57, Feb 2012 
[11] S. Kar, H. Chen and P. K. Varshney, "Optimal Identical Binary Quantizer Design for 
Distributed Estimation," To appear in IEEE Trans. on Signal Processing 
[12] T. Wimalajeewa, H. Chen and P. K. Varshney, ”Performance  Limits of 
Compressive Sensing-Based Signal Classification”, IEEE Trans. Signal Processing., 
revised, Nov 2011, (submitted, June 2011) 
[13] S. Kay, “A Poisson Spectral Representation for Random Process Modeling”, IEEE 
Trans. On Signal Processing, submitted 
[14] S. Kay, “A New Signal Representation and its Application to Auditory Neural 
Encoding and Signal Enhancement via Noise Addition”, IEEE Trans. On Signal 
Processing, submitted 
[15]  Satish G. Iyengar, Ruixin Niu, and Pramod K. Varshney, "Fusing Dependent 
Decisions for Hypothesis Testing with Heterogeneous Sensors," IEEE Transactions on 
Signal Processing (submitted) 
 
Theses and Dissertations 
[1] Ilker Ozcelik, “Voice Activity Detection using Stochastic Resonance”, MS Thesis 
(Advisor: Prof. Pramod K. Varshney, Co-advised with H. Chen), Syracuse University, 
June 2010. 
[2] Renbin Peng, Noise Enhanced and Human Visual System-Driven Image Processing 
Algorithms and Performance Limits. (Advisor: Prof. Pramod K. Varshney), Syracuse 
University, 2011 
 
7. News Articles  

• P. K. Varshney, “Adding noise can improve accuracy of digital mammograms,” 
RT Image Magazine, Feb. 1, 2010 

• H. Chen, “Constructive Role of Noise in Signal Processing", SPIE Newsroom. 
••  PPrreessss  ccoovveerraaggee  ooff  wwoorrkk  oonn  ddiiggiittaall  mmaammmmooggrraapphhyy,,  RRaaddiioo  FFMM  8888  aanndd  iinntteerrvviieeww  

wwiitthh  nneewwssppaappeerr  LL..AA..  TTiimmeess..  
••  DDiiggiittaall  mmaammmmooggrraapphhyy  wwoorrkk  aappppeeaarreedd  iinn  AACCMM  TTeecchh  NNeewwss  oonn  FFeebb..  33,,  22001100..    

 

8. Interactions/Transitions 
Invited talks:  

• P.K. Varshney, “Noise Enhanced Signal and Image Processing”, AFRL, WP Air 
Force Base, July 2009 
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• H. Chen, “Noise Enhanced Signal Detection and Estimation,” Mitsubishi Electric 
Research Laboratories, Dec. 17, 2009. 

 
 
Interactions: 

• There have been many interactions with industries that design and manufacture 
mammography machines with regard to our work on image enhancement based 
on SR. 

• Lectures at Lockheed Martin in Syracuse and SRC that included discussion on 
SR. 

• There has been interaction with Dr. Andy Noga of AFRL Information Directorate 
in the area of compressive sensing. In addition, there has been interaction with 
Don Leskiw of Leskiw Associates that resulted in an STTR Phase I award.  

 
Collaborations:  

• There has been an ongoing collaboration with Dr. Ramdas Kumaresan, University 
of Rhode Island with regards to the biological implications of hearing on signal 
processing.  

9. New Discoveries/Inventions/Patents 
••  HH..  CChheenn,,  JJ..  MMiicchheellss  aanndd  PP..KK..  VVaarrsshhnneeyy,,  OOppttiimmiizzeedd  SSttoocchhaassttiicc  RReessoonnaannccee  MMeetthhoodd  

ffoorr  SSiiggnnaall  DDeetteeccttiioonn  aanndd  IImmaaggee  PPrroocceessssiinngg,,  UUSS  77,,666688,,669999  BB22,,  IIssssuueedd  FFeebb..  2233,,  
22001100..  

• AA  cchhiilldd  aapppplliiccaattiioonn  ccoovveerriinngg  tthhee  mmaammmmooggrraapphhyy  aapppplliiccaattiioonn  iiss  iinn  pprrooggrreessss..   

10. Honors/Awards 
• Renbin Peng won the Nunan Award in a college-wide poster presentation 

competition at Syracuse University. 
• 2010 University of Rhode Island Foundation Scholarly Excellence Award 
• Pramod Varshney is the recipient of the IEEE 2012 Judith Resnik Award. 

 


	Final Report
	Syracuse University
	Project #: FA9550-09-1-0064
	2. Objectives
	3. Research Efforts (200 word summary)
	4. Summary of Accomplishments/New Findings
	Fig3. Performance comparison of distributed estimation systems in terms of Fisher Information for the optimal nonparametric quantizers based on 1st and 2nd moment information; minimax criterion is adopted for the system design:  higher minimum Fisher ...
	5. Personnel Supported
	6. Publications
	8. Interactions/Transitions
	9. New Discoveries/Inventions/Patents
	10. Honors/Awards



